Skip to content

Olympiad Inequalities

In a problem with \(n\) variables, \(\sum_{cyc}\) means to cycle through \(n\) variables, and \(\sum_{sym}\) means to go through all the \(n!\) permutations. e.g.

\[ \begin{aligned} \sum_{cyc}a^2&=a^2+b^2+c^2\\ \sum_{sym}a^2&=a^2+a^2+b^2+b^2+c^2+c^2\\ \sum_{cyc}ab&=ab+bc+ca\\ \sum_{sym}a^2b&=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2 \end{aligned} \]

Basic Inequalities

(AM-GM Inequality) For non-negative real numbers \(a_1,a_2,\dots,a_n\), we have:

\[ \frac{a_1+a_2 + \cdots+a_n}{n}\ge \sqrt[n]{a_1a_2\cdots a _n} \]

Proof: We apply a beautiful method called Cauchy Induction:

  • First, we show that the statement holds when \(n=2\):
\[ \frac{a_1+a_2}{2}\ge\sqrt{a_1a_2}\Leftrightarrow (a_1+a_2)^2\ge 4a_1a_2\Leftrightarrow (a_1-a_2)^2\ge 0 \]
  • Next, we show that if the statement holds for \(n\), then it holds for \(2n\):

Notice that

\[ \frac{a_1+a_2+\cdots +a_{2n}}{2n}=\frac{\frac{a_1+a_2+\cdots+a_n}{n}+\frac{a_{n+1}+a_{n+2}+\cdots+a_{2n}}{n}}{2} \]

By the previous cases:

\[ \frac{a_1+a_2+\cdots +a_{2n}}{2n}\ge\frac{\sqrt[n]{a_1a_2\cdots a_n}+\sqrt[n]{a_{n+1}a_{n+2}\cdots a_{2n}}}{2}\ge\sqrt{\sqrt[n]{a_1a_2\cdots a_n}\times\sqrt[n]{a_{n+1}a_{n+2}\cdots a_{2n}}} \]

Thus

\[ \frac{a_1+a_2+\cdots +a_{2n}}{2n}\ge \sqrt[2n]{a_1a_2\cdots a_{2n}} \]
  • Finally, we show that the statement holds for \(n\) implies that it holds for \(n-1\):

Let \(a_n = \frac{a_1+a_2+\cdots + a_{n-1}}{n-1}\):

\[ \frac{\sum_{i=1}^n a_i}{n}=\frac{\sum_{i=1}^{n-1}a_i}{n-1} \]

Thus:

\[ \begin{aligned} \frac{\sum_{i=1}^{n-1}a_i}{n-1}&\ge\sqrt[n]{a_1a_2\cdots a_n}\\ \implies\bigg(\frac{\sum_{i=1}^{n-1}a_i}{n-1}\bigg)^n&\ge \prod_{i=1}^{n-1}a_i\times\frac{\sum_{i=1}^{n-1}a_i}{n-1}\\ \implies\bigg(\frac{\sum_{i=1}^{n-1}a_i}{n-1}\bigg)^{n-1}&\ge \prod_{i=1}^{n-1}a_i\\ \implies\frac{a_1+a_2+\cdots + a_{n-1}}{n-1}&\ge \sqrt[n-1]{a_1a_2\cdots a_{n-1}} \end{aligned} \]

Example: Prove that \(a^2+b^2+c^2\ge ab+bc+ca,a^4+b^4+c^4\ge a^2bc+ab^2c+abc^2\)

Proof: By AM-GM,

\[ a^2+b^2+c^2=\sum_{cyc}\frac{a^2+b^2}2\ge \sum_{cyc}ab \]
\[ a^4+b^4+c^4=\sum_{cyc}\frac{a^4+a^4+b^4+c^4}{4}\ge \sum_{cyc}\sqrt[4]{a^8b^4c^4}=\sum_{cyc} a^2bc \]

Example: \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

The fundamental intuition is being able to decide which symmetric polynomials of a given degree are bigger. A useful formalization to all the patterns above is Muirhead's inequality.

(Muirhead's Inequality) Suppose we have two real sequences \(x_1\ge x_2\ge\cdots\ge x_n,y_1\ge y_2\ge\cdots\ge y_n\) of length \(n\), such that:

\[ \begin{aligned} x_1+x_2+\cdots+x_n&=y_1+y_2+\cdots+y_n\\ x_1+x_2+\cdots+x_k&\ge y_1+y_2+\cdots+y_k\quad\text{for all }k < n \end{aligned} \]

We say that \((x_n)\) majorizes \((y_n)\), which is often written as \((x_n)\succ(y_n)\) . Then

\[ \sum_{sym}a_1^{x_1}a_2^{x_2}\cdots a_n^{x_n}\ge \sum_{sym}a_1^{y_1}a_2^{y_2}\cdots a_n^{y_n} \]

It is not difficult to show this by AM-GM so the whole proof is left to the readers.

(Cauchy-Schwarz Inequality) For any list of real numbers \((a_n),(b_n)\), we have

\[ (a_1^2+a_2^2+\cdots +a_n^2)(b_1^2+b_2^2+\cdots b_n^2)\ge (a_1b_1+a_2b_2+\cdots+a_nb_n)^2 \]

The equality holds when we have two constants \(\mu,\lambda\) not all zero such that \(\mu a_i=\lambda b_i\) for any \(1\le i\le n\)

Proof: There are many proofs to this inequality. We provide a prove by constructing a quadratic polynomial:

\[ 0\le (a_1x+b_1)^2+(a_2x+b_2)^2+\cdots(a_nx+b_n)^2=\sum_{i=1}^n a_i^2x^2+2\sum_{i=1}^na_ib_i x + \sum_{i=1}^nb_i^2 \]

Since it's nonnegative, it has at most one solution so its determinant must be no greater than zero:

\[ (\sum_{i= 1}^n a_ib_i)^2 -(\sum_{i=1}^n a_i^2)(\sum_{i=1}^nb_i^2)\le 0 \]

There is also a complex form of this inequality, for complex number sequences \((a_n),(b_n)\), we have

\[ (|a_1|^2+|a_2|^2+\cdots +|a_n|^2)(|b_1|^2+|b_2|^2+\cdots |b_n|^2)\ge |a_1b_1+a_2b_2+\cdots +a_nb_n|^2 \]

Inequalities in functions

We say a function \(f\) is convex if \(f''(x)\ge 0\) for all \(x\) and concave otherwise.

(Jensen's Inequality) Suppose \(f\) is convex, then

\[ \frac{f(a_1)+f(a_2)+\cdots +f(a_n)}{n}\ge f(\frac{a_1+a_2+\cdots + a_n}{n}) \]

By convexity, we have that for all non-negative \(\lambda_1+\lambda_2 = 1\):

\[ f(\lambda_1 a_1+\lambda_2a_2)\le \lambda_1f(a_1) +\lambda_2f(a_2) \]

It can be generalized to \(n\) non-negative numbers such that \(\lambda_1+\lambda_2+\cdots +\lambda_n = 1\), we have:

\[ f(\sum_{i=1}^n\lambda_ia_i)\le\sum_{i=1}^n\lambda_if(a_i) \]

Intuitively, this is telling you that any point in the region bounded by \((a_i,f(a_i))\) is above the function. Pick all \(\lambda_i=\frac{1}n\) and we have Jensen's inequality.

(Karamata's Inequality) If \(f\) is convex and \((x_n)\succ (y_n)\), then

\[ \sum_{i=1}^n f(x_n)\ge \sum_{i=1}^n f(y_n) \]

Proof: Define \(c_i\) as the slope of the line through \((x_i,f(x_i)),(y_i,f(y_i))\), then by convexity:

\[ c_{i+1}=\frac{f(x_{i+1})-f(y_{i+1})}{x_{i+1}-y_{i+1}}\le \frac{f(x_i)-f(y_i)}{x_i-y_i}=c_i \]

Define \((A_n),(B_n)\) the prefix sum of \((x_n),(y_n)\) respectively, so \(A_0=B_0=0\) and \(A_i=\sum_{i=1}^n x_i,B_i=\sum_{i=1}^n y_i\). Then:

\[ \begin{aligned} \sum_{i=1}^n(f(x_i)-f(y_i)) &=\sum_{i=1}^n c_i(x_i-y_i)\\ &= \sum_{i=1}^n c_i(A_i-A_{i-1}-(B_i-B_{i-1}))\\ &= \sum_{i=1}^n c_i(A_i-B_i)-\sum_{i=1}^nc_i(A_{i-1}-B_{i-1})\\ &=c_n(A_n-B_n)+\sum_{i=1}^n(c_i-c_{i+1})(A_i-B_i) - c_1(A_0-B_0)\\ &= \sum_{i=1}^n(c_i-c_{i+1})(A_i-B_i)\ge 0\\ \end{aligned} \]

We can also attain Jensen's Inequality directly from this by taking \((a_1,a_2,\dots,0)\succ (\frac{a_1+a_2+\cdots+a_n}{n},\frac{a_1+a_2+\cdots+a_n}{n},\cdots,\frac{a_1+a_2+\cdots+a_n}{n})\) , where \(a_1\ge a_2\ge\cdots\ge a_n\) .

Comments